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TOTALLY GEODESIC MAPS

JAAK VILMS

Introduction

A C* mapf: X —» Y of finite-dimensional connected C~ Riemannian
manifolds is defined to be totally geodesic if for each geodesic x, in X the
image f(x,) is a geodesic in ¥ [1, p. 123]. An equivalent definition is that f is
connection-preserving, or affine. The global structure of these maps is investi-
gated in this paper.

§ 1 contains preliminary material relating to the fundamental form of a map
[1, p. 123]. In §2 a global factorization theorem is proved, namely, if X is
complete, then each totally geodesic map factors into a Riemannian submersion
[3], [4], [6] and an immersion, both totally geodesic. In § 3 the submersion
part of this factorization is studied. It is shown that the nontrivial totally
geodesic Riemannian submersions with X complete can be characterized as
fibre bundles with integrable (flat) connection [2], having complete Riemannian
metrics on base and. fibre, the latter being invariant under the structural
group.

The proof of the factorization theorem starts with the fact (shown in §1)
that kernels of affine maps are holonomy-invariant. This implies that totally
geodesic maps have constant rank, whence a local factorization follows. The
global factorization uses results of Reinhart [8] and of Kobayashi and Nomizu
[5]. The proofs in § 3 depend on results of Hermann [4] and O’Neill [6].

The material of § 1 and Theorem 3.3 in § 3 were part of the author’s study
of the fundamental form in his thesis done under the guidance of Professor
James Eells, whom the author wishes to thank in this respect.

It is assumed without further mention that everything below is C=, and
manifolds are connected. “Totally geodesic™ is also abbreviated as “t.g.”.

1. The fundamental form of a map

The fundamental form of a map expresses the manner in which connections
on two manifolds are related by a map of these manifolds. It vanishes iff the
map is affine, and also furnishes a good means of establishing the equivalence
of the above two definitions of totally geodesic maps.

The definition of the fundamental form is conveniently given in the following
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general setting. Let E and E be vector bundles over X with linear connections
D and D, and p: E— E a linear map. ¢ is then a section of the bundle
L(E, E), which has a connection defined by D and D. The covariant derivative
of this section ¢ is called the fundamental form of ¢, 8(¢), [1]. It is the section
of LXE,TX; E) defined by B(p)(A4,v) = f),,goA — ¢D,A, where A and v are
(germs of) sections of £ and TX respectively.

If one starts with a map f: X — Y and a linear map ¢: E — F over f, with
linear connections D and D on E and F, respectively, then the above situation
is recovered by setting E = f'F, ldentlfymg ¢ with the unlque linear map
E — E defined by it, and putting on £ the pull-back connection D induced by
D. p(p) will then be a section of LYE, TX ; {~'F).

The pull-back connection D on f~'F — X is defined locally by

(ﬁvA)z = A./z-v:c + ]7fx(Az7f.{c’U.t) s

where 4, ¢ (f'F), = F,,, primes denote derivatives, and I" denotes the local
Christoffel symbol for D.

Lemma 1.1. ﬁ—parallel translation along curves in X coincides with D-
parallel translation along curves in f(X) C Y.

Proof. A section 4, of f"'F — X along a curve x, in X is parallel iff
DA, =0forally, iff 4, + I';,(A,,f,x)) = O for all ¢, iff the section 4, of
F — Y along the curve y, = fx, is parallel. q.e.d.

Before defining an affine map, it is convenient to note

Lemma 1.2. B(¢) = 0 iff ¢ preserves parallel translation.

Proof Let e, be a curve in E over curve x, in X. Then Bp)e,, x)) =

¢§0€¢ — oD, = Dlgoet if e, is parallel (i.e., if D,e, = 0). Then clearly
Blp)(e,, x)) = O iff e, is parallel along x,. Thus B(p) = 0 iff ¢ preserves
parallel translation for all curves in E over all curves in X. g.e.d.

A linear map p: E — E is called an affine map if any of the following
equivalent conditions holds:

(1) Bl =0,

(ii) ¢ preserves parallel translation,

(iii) D,pA = ¢D,A for all v and 4.

- The following proposition is the basis of all the results below.

Proposition 1.3. If ¢ is affine then ker ¢ is a holonomy-invariant subbundle
of E.

Proof. Along a given curve, parallel translation is an isomorphism of the
fibres at corresponding points and thus sends zero into zero. Also translation
along the reverse curve is the inverse of translation along the curve. Hence
ker ¢ is invariant along curves. But X is connected, so ker ¢ is invariant under
parallel translation and therefore under the holonomy group. If ker ¢ is zero
at one point, it is zero everywhere.
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Ker ¢ is a subbundle of E because the above implies ¢ is a linear map of
constant rank, and a standard argument then applies. q.e.d.

For a map f: X — Y of manifolds with linear connections, the fundamental
form of f, B(f), is defined to be g(f,) (where f,.: TX — TY denotes the tangent
map of f); also f affine is defined to mean f, affine.

In the case of symmetric connections, a map is affine if and only if it is
totally geodesic. This is true because a symmetric connection is uniquely
determined by its geodesics, as is well known. A short proof of this will
nevertheless be given, using the fundamental form, as follows.

B(f) is a bilinear function. Each bilinear function B(u, v) can be written as
the sum of its symmetric and antisymmetric parts By(u, v) = 1{B(u, v) +
B(v, w)] and B, (u,v) = }[B(u, v) — B(v, w)], respectively. Note that B
restricted to the diagonal determines B;:

B (u,v) = B(u + v,u 4+ v) — Blu — v,u —v) .

Therefore B, = 0 iff B| diagonal = 0.

Lemma 1.4. (i) B(f)| diagonal = 0 iff f is totally geodesic.

(i) BN(u, v) = F(fu,{,0) — [ F (4, v), where ¢ s
torsion.

Proof. B(H(x,, x}) = D fyx, — f,D.x,, but D,f x; = D,y, where y, = fx,.
Now a curve is a geodesic iff its tangent vector is parallel; and through each
point in each direction goes a geodesic. Reasoning analogous to that in Lemma
1.2 then proves (i). (ii) is proved by local calculations. Namely,

Fu,v) = 3Du — D — [w,ul) Z 3w, v) — ', W) ,
because Du = wv + I'(u, v) and [u, v] < w'v — v'u. Now
D.fou'= (Fuyv + I'(fu, f'v)
= f"(u,v) + fuv + I'fu,fv),
whence
Dfu — Dfv — flv,ul = $(F(Fu, fv) — T(f', fu)
=" 4 1,0) .

Substitution into the equation B(H(y, v) = IA)J w4 — f Du and an easy
calculation yield the conclusion.

Proposition 1.5. f is affine iff f is totally geodesic and ¢f, = f,.7.

Proof. The bilinear function §(f) is zero iff its symmetric and antisymmetric
parts vanish. The conclusion follows from Lemma 1.2.

Corollary 1.6. Suppose connections are symmetric.

(i) Then B(f) is symmetric.

(i) fis affine iff f is totally geodesic.
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2. The factorization theorem

The theorem will be deduced from Proposition 1.3 via the theory of foliations
(=integrable subbundles of 7X ; see Palais [7] for terminology). Let f: X > Y
be, as above, a map of manifolds with linear connections.

Lemma 2.1. If f is affine, then either f is an immersion, or kerf, is a
regular foliation on X.

Proof. By Proposition 1.3 either f is an immersion or f, has constant
positive rank k. A version of the implicit function theorem then implies that
locally there are coordinates on X and Y such that f(x!,...,x") =
(«*, ---,x*%,0,-.-,0). But then it is clear that ker f, is a regular foliation,
because each slice (= set of points on X defined by fixing x', - - -, x*) clearly
lies on a different f~'(y). g.e.d.

To factor f through a submerison, all that needs to be done is to collapse
the leaves of the foliation, and make sure the quotient space is a manifold.
Without additional hypotheses, however, Hausdorfness fails (see the example
in [7, p. 20]). Reinhart’s results [8] say that one such hypothesis is
completeness of a Riemann metric on X, which is bundle-like for the foliation.
This happens to work for the foliation at hand.

Henceforth let X and Y be Riemannian manifolds. Since their connections
are symmetric, a map f: X — Y is affine iff it is totally geodesic (Corollary 1.6).
f is a Riemannian submersion [6] if f, restricted to (ker f,)* is an isometry
onto TY. The identity map and, more generally, immersions, which are
Riemannian coverings, are trivial cases of this definition.

Theorem 2.2. If X is complete, then each totally geodesic map f factors
into a totally geodesic Riemannian submersion followed by a totally geodesic
immersion.

Proof. If fis an immersion, then a trivial factorization works; otherwise,
ker f, is nontrivial and holonomy-invariant (Proposition 2.1) so X is reducible.
But then [5, Chap. IV, § 5] shows X is locally isometric to a product of open
neighborhoods V| x V, lying on a leaf of ker f, and of (ker f,)*, respectively.
This means that the metric is bundle-like for ker f,, a fortiori [8, §2]. Hence
by [8, Cor. 3], collapsing the leaves of ker f, produces a manifold B. The
projection map z: X — B is a submersion [7], whence B inherits a metric
from X such that x is a Riemannian submersion. It is also easy to see that

the induced map g: B— Y is an immersion. The local diagram V, >< V, ——» Y
"\ /

shows that = and g are t.g., since = is projection onto ¥, and’f is t.g.
Remark. The leaves of ker f, are totally geodesic submanifolds. This is
also true without a metric [5, p. 181].
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The following fact, contained in the proof of the theorem, is stated here for
emphasis.

Proposition 2.3. If f is affine and not an immersion, then X is reducible.

Corollary 2.4. If X isirreducible, then it admits only immersions as totally
geodesic maps, and these are homothetic (= isometric up to constant).

Proof. See the argument in [5, p. 242].

3. Riemannian submersions

The structure theorem for totally geodesic Riemannian submersions which
are nontrivial (i.e., not immersions) follows from a theorem of Hermann {4,
Th. 1] and its (partial) converse, via a preliminary characterization depending
on results of Hermann {4] and O’Neill [6].

Let z: X — B be a Riemannian submersion, and set V' = kerr, and H =
(ker z,)+; also assume that V is nontrivial. ¥ and H are subbundles of TX,

and V is integrable with the components of the fibres as leaves. In terms of
the orthogonal decomposition TX = H & V, f(z) has matrix form

[BONH X H - p1H X V]
BV x H  Bm)V XV

which is symmetric, since 8(x) is symmetric by Corollary 1.6.

Lemma 3.1 [4, Prop. 3.1]. 8(z)|H x H = 0.

Lemma 3.2 [6].

(1) A@|V X V =0iff V has t.g. leaves.

(i) B@) |V x H = 0 iff H is integrable.

Proof. In [8, §2] O’Neill defines for Riemannian submersions two
“fundamental tensors” T and A. It follows from definitions in § 1 and [6] that

(m | H)'B@)(Vu, Vo) = —H(Dy Vu) = —T Vu,
(| ) B@)Vu, Hv) = —HDg Vi) = — Ay, Vu .

Since T is the second fundamental form of the fibres, it vanishes iff the fibres
are t.g. submanifolds, which proves (i). Now A, is skew-symmetric for the
metric of X, and switches H and V. Hence A, Hw = 0 for all »,w iff
Ay.Vu = 0 for all u, v, whence [6, Lemma 2] gives (ii). qg.e.d.

The lemmas, together with the symmetry of g(z), yield-

Theorem 3.3. A (nontrivial) Riemannian submersion is totally geodesic iff
the fibres are totally geodesic submanifolds and the horizontal subbundle is
integrable.

Theorem 3.4 [6, Th. 1]. If X is complete and z: X — B is a Riemannian
submersion with 1.g. fibres, then r is a fibre bundle with connection and the
group of isometries of a fibre as structural group.

Let z: X — B be a (G, F) bundle with connection [2], and assume B and F
have Riemannian metrics with the one on F being G-invariant.
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Theorem 3.5. With the above hypothesis, there exists on X a natural
Riemannian metric such that r is a Riemannian submersion with t.g. fibres.

Proof. By definition of a connection [2], there is a horizontal subbundle
H such that TX is a direct sum of H and V = ker z,.. The inner product on
TB is transferred to H by (z, |H)™'. The metric on F is G-invariant, which
allows it to be transferred to the fibres in a well-defined way by local maps of
the bundle structure. Since the fibres are integral manifolds of V, this gives
an inner product on V. Then the inner product on TX is defined as a direct
sum, and = is a Riemannian submersion.

The definition of a connection also specifies that there is unique C>~ H-lift
of curves in B which gives G-isomorphism of fibres (called parallel translation).
Since the metric on F is G-invariant, the above definition of the metric on
fibres shows parallel translation to be an isometry of the fibres.

Now Hermann’s argument for proving [6, Th. 1] can be reversed in the
following manner to show the fibres to be totally geodesic: Let a(f) be a curve
on the fibre X, parametrized proportionally to the arc length, with0 < ¢ < 1.
Let v(0) be a given horizontal vector at «(0), and define o(¢,s) to be the
parallel translation of «(f) along some curve in B with intial vector =, v(0).

Let v(t) = aa a(t,0), a horizontal vector field along «(f), and let f(s) denote
s

the arc length of the curve o(s, ¢), with s fixed, from t =0 to ¢ = 1. But since
parallel translation is isometric, f(s) is constant, i.e., f/(0) = 0. But then the
well-known first variation of the arc length formula (see [6, (2.2)]) gives

f ' f(l()) < DB, v() > dt = 0, so (D&'(t), v(t)> = O for some 0 < ,

< 1. Next let o,(t) = a(2/2), 0 < t < 1, and apply the same procedure. Since
D,ai(t) and D,’(¢) are proportional, one gets (D,a'(t,), v(t,)> = O for some
0 < ¢, < . This procedure gives a sequence ¢; — O on which {D,a’(5), v(#)>
vanishes. Thus {D,a’(0), v(0)> = 0.

Since ¥(0) was an arbitrary horizontal vector, this shows D,a’(0) is vertical,
which means it equals Df«’(0), where D refers to the connection on the fibre.
But then the fundamental form 8 of the inclusion X, C X vanishes, since
B(a’(0), ¢’ (0)) = D,a’(0) — Dia’(0), and «(f) was an arbitrary curve on X,.

Theorem 3.6. 7: X — B is a (nontrivial) totally geodesic Riemannian
submersion with complete X iff it is a fibre bundle with flat connection, having
complete metrics on the base and fibre, the latter being invariant under the
structural group.

Proof. This theorem, apart from the completeness statement, follows from
Theorems 3.3, 3.4, and 3.6, since a flat connection implies that H is integrable.
For the completeness part, if X is complete, then the fibres, being totally
geodesic submanifolds, are complete. B is complete since each geodesic in it
is the image of a horizontal geodesic (LLemma 3.1). On the other hand, it was
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noted in the proof of Theorem 2.2 that r being totally geodesic implies the
metric on X is locally a product of vertical and horizontal neighborhoods.
Hence the base and fibre being complete implies that X is complete.

Corollary 3.7. If n: X — B is a totally geodesic (nontrivial) Riemannian
submersion with complete and simply connected X, then X is a Riemannian
product and 7 is projection.

Proof. Theorem 3.6, Proposition 2.3, and the well-known de Rham
reducibility theorem give this result.

The following results deal with the question of existence of totally geodesic
nontrivial Riemannian submersions for a given Riemannian manifold X.

Lemma 3.8. A Riemannian submersion n: X — B is totally geodesic iff
ker ., is holonomy-invariant.

Proof. The “only if” part follows from Proposition 1.3. For the “if” part,
observe that if ker z, is holonomy-invariant, then [5, Ch. 1V, §5] shows
ker z, and its complement are integrable with t.g. leaves. Thus z is t.g. by
Theorem 3.3. q.e.d.

For a given reducible Riemannian manifold X, let T,.X = 4, @ --- @ A4,
be a complete decomposition of a tangent space into holonomy-invariant
mutually orthogonal subspaces. Note the only holonomy-invariant subspaces
are those of foorm 4, @ --- @ A4,

Theorem 3.9. The set of totally geodesic Riemannian submersions on a
reducible complete Riemannian manifold X is in a 1-1 correspondence with
the set of holonomy-invariant subspaces of the tangent space at a point.

Proof. By Lemma 3.8 each t.g. Riemannian submersion corresponds to
one of these subspaces. Conversely, given such a subspace, the proof of
Theorem 2.2 shows that this subspace generates a foliation, whose leaves
collapsed produce a space B such that z: X — B is the required submersion.
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